Skip to content

Custom Models

🛠️ Customization and Flexibility

FastALPR is designed to be flexible. You can customize the detector and OCR models according to your requirements.

Using Tesseract OCR

You can very easily integrate with Tesseract OCR to leverage its capabilities:

tesseract_ocr.py
import re
from statistics import mean

import numpy as np
import pytesseract

from fast_alpr.alpr import ALPR, BaseOCR, OcrResult


class PytesseractOCR(BaseOCR):
    def __init__(self) -> None:
        """
        Init PytesseractOCR.
        """

    def predict(self, cropped_plate: np.ndarray) -> OcrResult | None:
        if cropped_plate is None:
            return None
        # You can change 'eng' to the appropriate language code as needed
        data = pytesseract.image_to_data(
            cropped_plate,
            lang="eng",
            config="--oem 3 --psm 6",
            output_type=pytesseract.Output.DICT,
        )
        plate_text = " ".join(data["text"]).strip()
        plate_text = re.sub(r"[^A-Za-z0-9]", "", plate_text)
        avg_confidence = mean(conf for conf in data["conf"] if conf > 0) / 100.0
        return OcrResult(text=plate_text, confidence=avg_confidence)


alpr = ALPR(detector_model="yolo-v9-t-384-license-plate-end2end", ocr=PytesseractOCR())

alpr_results = alpr.predict("assets/test_image.png")
print(alpr_results)
Tip

You can implement this with any OCR you want! For example, EasyOCR.